Journal of Organometallic Chemistry, 66 (19'74) 119-125 @ Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands,

SUBSTITUENT EFFECTS IN ALLYLMETAL CARBONYLS

H.L. CLARKE and N.J. FITZPATRICK

Department of Chemistry, University College, Beifielci, Dublin 4 (Ireland) **(Received June 15th, 1973)**

Summary

The Mössbauer and IR spectra of $(\pi\text{-}C_3H_4X)Fe(CO)_2NO$ (X = H, 1-CH₃, **2-CHs , J-Cl) indicate that the carbonyl and nitrosyl groups absorb the inductive effects of ally1 substituents, leaving the metal s electron density relatively** unaffected. The NMR spectra and carbonyl vibrational frequencies of (π - $C_3H_4X)Co(CO)_2PPh_3$ (X = H, 1-CH₃, 2-CH₃, 2-Cl) show that the electronic effects are similar to those found in the parent $(\pi\text{-}C_3H_4X)Co(CO)_3$ compounds, and that there is no evidence of asymmetric π , σ -bonding in $(\pi$ -C₃H₄X)- $Co(CO)_2$ PPh₃.

119

'Introduction

The substituent in $(\pi\text{-}C_3H_4X)Co(CO)_3$ (X = H, 1-CH₃, 1-Cl, 2-CH₃, 2-Cl) **[l] has been shown to have an inductive electronic effect on the IR carbonyl** frequencies similar to that found in $(\pi - C_6H_5R - \pi - C_4H_5)Fe(CO)_3$ [2] and $(\pi\text{-}C_6H_5R)M(CO)_{3}$ [3 - 5], in which $\nu(CO)$ correlates with the Hammett σ **function. The substituent also has a small effect on the OC-M-CO angle [6] and influences significantly the isomer proportion of the phosphine and phos**phite compounds $(\pi\text{-}C_3H_4X)Co(CO)_2PY_3$ (Y = Ph, OPh, OCH₃) [7]. The car**bony1 vibrational frequencies, however, do not correlate with the anomalous** relative rates of monosubstitution by PPh_3 of $(\pi-\text{C}_3H_4X)Co(CO)_3$ [8]. Although substituent effects on the rates of nucleophilic substitution reactions of **metal carbonyls are not well documented [9,10), it seems likely that the** relative rates of substitution of $(\pi$ -C₃H₄X)Co(CO)₃ are not due to electronic inductive effects of the substituents. The PMR spectra of $(\pi\text{-}C_3H_4X)Co(CO)_3$ show that they are normal π -allyl compounds [11]. The effects of substituents in $(\pi\text{-}C_3H_4X)Fe(CO)_2NO$ and $(\pi\text{-}C_3H_4X)Co(CO)_2PPh_3$ using Mössbauer, IR **and PMR spectroscopy are now reported.** .

${\bf Results}$ and discussion

Allj~dikarbonylnitrosyliron compounds

Compounds containing the iron-allyl group include π -C₃H₅Fe(CO)₃X $(X = CI, Br, I)$. [12 - 18], $[\pi$ -C₃H₅Fe(CO)₃]₂ [19], $(\pi$ -C₃H₅)₂Fe(CO)₂ [20] and π -C₃H₅Fe(CO)₂NO [21 - 25]. Only the first group of compounds has been studied using Mössbauer spectroscopy [17,18].

The Mijssbauer results. (Table 1) indicate that the chemical shift values (which measure the metal *s* electron density), occur within a narrow velocity range and are equal within experimental error (with the exception of the 2methyl compound). The carbonyl stretching frequencies $\nu(CO)$, however, **clearly show the effects of the substituents (Table 2). The electron-donating** methyl group weakens the CO bond (qualitatively $\rm CH_3 \rightarrow C_3H_4 \rightarrow M=C=O$) by electron donation into antibonding π^* CO orbitals and lowers $\nu(CO)$, whereas the chlorine atom withdraws electrons and increases ($\nu(CO)$ Cl $\leftarrow C_3H_4\leftarrow Fe\leftarrow C\equiv O$).

The substituents have similar effects on the nitrosyl stretching frequencies $\nu(NO)$ (Table 2).

The constancy of δ and the changes in $\nu(CO)$ and $\nu(NO)$ with substituents **suggest that the electronic effect of the substituent is absorbed by the carbonyl and nitrosyl groups with the metal acting as an electron conductor_**

6 increases with decreasing n-acceptor power of the ligand by increasing the metal *d* **orbital population and consequently shielding the metal s electrons.** The effect of σ -donation from the ligand varies depending on whether the donation is mainly to s or to *d* and *p* orbitals. Rate constant data for the S_N 2 **reactions of** π **-C₃H₅Fe(CO)₂NO and Fe(CO)₂(NO)₂ with phosphines, and car-**

TABLE 1

$M\ddot{\text{O}}$ SSBAUER PARAMETERS a OF (π -C₃H₄X) Fe (CO)₂NO

"Measured at 77 K with reference ;o a sodium nitroprusside absorber as standard.

TABLE 2 :

INFRARED CARBONYL AND NITROSYL FREQUENCIES OF (π **-C₃H₄X)Fe(CO)₂NO**

(Cyclohexane solution, ± 1 **cm⁻¹)**

 $\label{eq:1} \mathcal{L} \left(\mathcal{L} \left(\mathcal{L} \right) \right) = \mathcal{L} \left(\mathcal{L} \right) \left(\mathcal{L} \right) = \mathcal{L} \left(\mathcal{L} \right) \left(\mathcal{L} \right)$

Velocity (mm set-'1

Fig. 1. Mössbauer spectrum at 77 K of $(1-\text{CH}_3-\pi-\text{C}_3H_4)\text{Fe(CO)}_2(NO)$. The velocity scale is relative to **sodium nitroprusside. and the solid lines represent a least squares fit to Lorentzian line shapes.**

bonyl frequencies of both compounds $[k_2 \text{ and } \nu(CO)]$ of π -C₃H₅ Fe(CO)₂ NO **are lower 12411 indicate that there is a higher electronic charge to the metal in** π -C₃ H₅ Fe(CO)₂ NO due to the weaker π -acceptor or stronger σ -donor property of the π -allyl ligand relative to the nitrosyl. The chemical shifts of π -C₃ H₅Fe- $(CO)_2$ NO (δ 0.372 mm·sec⁻¹) and $Fe(CO)_2$ (NO)₂ [26] (δ 0.32 mm·sec⁻¹) therefore indicate that the π -allyl ligand is a weaker π -acceptor than the nitrosyl or (since increasing σ -donor power of the ligand to metal p and d orbitals increases δ) that σ -donation by the π -allyl ligand to p and d orbitals is more **important than a-donation by the nitrosyl to thep and** *d* **orbitals of the metal.**

Further information on the metal-carbonyl and metal-nitrosyl groups may be had from the $600 \cdot 250$ cm⁻¹ region of the IR, where the metal**car-bony1 and metal-nitrosyl stretching and bending modes normally. occur.**

Fig. 2. 2500 cm⁻¹ region of the infrared spectrum of π -C₃H_SFe(CO)₂NO.

TABLE 3

INFRARED SPECTRA OF $(\pi$ **-C₃H₄X)Fe(CO)₂NO** (600-400 cm⁻¹ region, polythene cells, CH_2Cl_2 solution, $\pm 2 \text{ cm}^{-1}$)

Assignment of M-CO and M-NO bands in this spectral region is facilitated by some general considerations. Usually in $(\pi\text{-moiety})M(CO)_{3}$ compounds $\delta(M-C-O)$ bands are found [28,29] at 500 - 700 cm⁻¹ while $\nu(M-C)$ bands are expected at \approx 500 cm⁻¹. Metal-nitrosyl bands are found to be **more intense than metal-carbonyl bands, with v(M-NO) at higher fre**quencies than $\delta(M-N-O)$ [30 - 33], the reverse of that found for the M-C-O modes. The $\delta(M-C-O)$ $(A_1 + B_1 + A_2 + B_2)$ in $C_{2\nu}$ symmetry) and $\nu(M-C)$ - $(A_1 + B_1)$ modes are therefore assigned as in Table 3. It is noted that $\nu(M-C)$ **is lowered appreciably by the chloro-substituent.**

Unusually intense combination bands are found in the 2500 cm^{-1} region. **From their positions, relative intensities and shapes, these bands** are likely to be combinations of $\nu(CO)$, $\nu(M-CO)$ and $\nu(NO)$, $\nu(M-NO)$ modes, and support **the assignments in Table 3.**

The relative intensity ratio of the A_1 and B_1 $\nu(CO)$ bands, $I(B_1)/I$ $I(A_1) = 1.6$, shows that the OC-M-CO angle [34] is 103°, which is nearly equal to that of π -C₃H₅Co(CO)₃ [6,35]. π -C₃H₅Fe(CO)₂NO therefore has a **normal π-allyl structure, i.e. the compound has a distorted tetrahedral structure and the n-ally1 group occupies between one and two coordination sites.** π -C₃H₅ Fe(CO)₂NO has, formally, a $3d¹⁰$ electron configuration, is diamag**netic and is in -the low-spin state. The only. contribution to the quadrupole splitting is the asymmetry parameter.**

The quadrupole splitting, Δ , of π -C₃H₅Fe(CO)₂NO (Δ 1.178 mm-sec⁻¹) is much higher than that of $Fe(CO)_2(NO)_2$ [26] (Δ 0.34 mm·sec⁻¹), in**dicating that the ally1 group causes greater asymmetry cf the electric field than the nitrosyl. This is not surprising in view of the lower n-acceptor ability of the aUy1 iigand and its mode of bonding through three carbon atoms, which would be. expected to reduce considerably the cubic symmetry of the tetrahedral field.**

The electronic effects of the substituents are not reflected in the quadru**pole splitting (TabIe I), which shows that the substituents distort the electric** field not simply by electronic effects. Delocalisation of the allyl π -electrons **may determine the relative quadrupole splitting; the l-Cl-substituted compound has the most delocalised bond and the largest quadrupole splitting.**

\boldsymbol{A} llyldicarbonyl(triphenylphosphine)cobalt compounds

The proton chemical shifts and proton-proton coupling constants of the $(\pi$ -C₃ H₄ X)Co(CO)₂ PPh₃ compounds are given in Table 4. The spectra are

122

TABLE4

PMR SPECTRA OF π **-C₃H₄XCo (CO)₂PY₃ (CHC13solution)**

实际的人, 2010年11月11日

those of normal π -allyl compounds [36]. The spectra of the 2-CH₃- and 2- $Cl-C₃H₄Co(CO)₂PPh₃$ compounds were of particular interest in view of the asymmetrically-bonded π -allyl with a partial σ -bond in $(2-C1-\pi, \sigma-C₃H₄)F_e$ **(CO)(PPh₃)NO [37]. However, only two allyl peaks due to the syn- and anti**protons of a π -allyl group were found in each, indicating a completely delocalised π -bond. The spectrum of $(2$ -ClC₃H₄)Co(CO)₂P(OPh)₃ also showed only **two peaks.**

The peaks due to the *syn-* and *anti-*protons of π -C₃ H₅ Co(CO)₂ PPh₃ were split by ³¹ P-H coupling. A coupling constant of \approx 2Hz was observed for the syn-protons and \approx 0Hz for the *anti*-protons, which indicates that the *anti***protons are cis to the PPh, group 1383. The ally1 group must then be tilted** with respect to the PPh₃ group.

The allyl protons are more screened by the metal in $(\pi-\text{C}_3 H_4 X)\text{Co(CO)}_2$. PPh₃ relative to $(\pi$ -C₃H₄X)Co(CO)₃, due largely to the poorer π -acceptor abil**ity of PPhs relative to CO.**

The AK_2X_2 spin system of the π -allyl group does not simplify to AX_4 in the presence of excess PPh₃, unlike compounds of the type π -C₃H₅PdL₁L₂ $(L_1 \neq L_2)$ [36].

The carbonyl stretching frequencies. (Table 5) show that the electronaccepting Cl atom in both the 1- and 2-positions lowers the carbonyl π^* orbital

TABLE 5

IR SPECTRA OF (rC_3H_4X) Co (CO)² PPh₃: CARBONYL STRETCHING FREQUENCIES **(Cyclohexane solution,** ± 1 **cm⁻¹)** the control of the control of

aRef.[391.

-124

population and increases $\nu(CO)$, whereas the electron-donor, $CH₃$, lowers $\nu(CO)$. The trend parallels that found for $(\pi-C_3H_4X)Co(CO)_3$: [1], indicating that the nature of the allyl-metal bond does not change significantly. The relative intensity ratio of the $\nu(CO)$ bands, $I(B_1)/I(A_1) = 1.43$, indicates that the OC-M-CO bond angle [34] is $\approx 100^{\circ}$ and is almost equal to that of π -C₃H₅Co(CO)₃ [6,35]. This shows that the PPh₃ group has little effect on the ligand distribution.

Experimental

 $(\pi$ -C₃H₄X)Fe(CO)₂NO compounds were prepared from NaFe(CO)₃NO [40] in ether and the corresponding allyl halide. Infrared spectra were obtained using a Perkin - Elmer 457 spectrometer, and were calibrated using H_2O and polystyrene. Mössbauer measurements were obtained using a Harwell Mössbauer Drive unit and electronics in conjunction with a Nuclear Data 4410 Analyser. The samples were run as frozen liquids at 77 K, which was facilitated by the use of a Harwell top-loading Mössbauer Cryostat enabling quick freezing. The source was 57Co in a Pd matrix and was of nominal strength 4 mCi. All measurements were made with reference to a sodium nitroprusside absorber as standard. The spectra were fitted ori an IBM 1130 computer using a least squares curve fitting programme. NMR spectra **were** obtained of CHCls solutions at 30[°] using a Varian HR60 spectrometer, with reference to TMS as standard.

Acknowledgements ..,

Helpful comments by Professor D.A. Brown of. this Department and Dr. F.A. Deeney of the Department of Physics, University College, Cork, who also ran the Mossbauer spectra, are gratefully acknowledged.

References

1 HlL. C&&e andN.J. Fit&trick J. Organometal. Chem.. 43 (1972) 405.

..

- **-2 J-M.-Landesberg and L. Katz. J. Organometal. Chem.. 35 (1972) 327_**
- ' **3 RD. Fischer, Chem. Ber.. 93 <1960) 165.**
- **4 D.A. Brownand F.S. Hughes, J. Chem. Sot.** *A.* **(1968) 579.**
- **5 G.:Klopman and K. Noack. Inorg. Chem.. 7 (1968) 579.**
- **6. H.L. Clarke and N.J. Fitzpatrick. Inorg. Nucl. Chem. Lett., 8 (1973) 81.**
- **7** H.L. Clarke and N.J. Fitzpatrick, Inorg. Nucl. Chem. Lett., 8 (1973) 75.
- 8 R.F. Heck, J. Amer. Chem. Soc., 85 (1963) 655.
- **9 D.A. Brown. Inorg. Chim. Acta Rev.. 1** *(1967)* **35.**
- 10 **R. Angelici. OrganometaI. Chem. Rev.. 3 (1968) 173.**
- 11 W.R. McClellan, H.H. Hoehn. H.N. Cripps. E.L. Muetterties and B.W. Howk. J. Amer. Chem. Soc., 83 **(1961):1601. ._. .._** -..

. .

- 12 H.D. Murdoch and E. Weiss, Helv. Chim. Acta, 6 **(1962)** 1927.
- **.13 R.F. Heck and C;R. Boss, J. Amer. Chem. Sot.. 86 (1964) 2580.**
- 14. A.N. Nesmeyanov. Yu.A. Ustynyuk, 11. Kritskaya and G.A. Shehembelov, J. Organometal. Chem., 14 (1968) 395.
- ..15 **.J_D. Cotton. DiDoddreB. R.L. Hearlewood.and W. Kitehing. Au&. J. Chem.2 22 (1969) 1'785;**
- 16^{Λ} A.N. Nesmeyanov. Yu.S. Nekrasov. N.P. Avakyan and *1.1.* Kritskaya, J. Organometal. Chem., 33 **(1971)** 375. **.,.**
- 17' L. Korecz and K. Burger, Acta Chim. Acad. Sci. Hung.. 58 (1968) 253.
- 18 K. Burger. Inorg. Chim. Acta Rev., 6 (1972) 31.
- **19 H.D. Murdoch and E.A.C. Lucken, Helv. Chim. Acta, 47 (1964) 1517...**
- 2O_A.N. Nesmeyanov, I.I. Kritskaya, Yu.A. Ustvnvuk and E.I. Fedin. Dokl. Akad: Nauk SSSR., 176 (1967)
-- 341. **.**
- **21 H.D. Murdoch. 2. Naturforsch. B. 20 (1965) 179.**
- 22 R. Bruce, F.M. Chaudhary, G.R. Knox and P.L. Pauson, Z. Naturforsch. B. 20 (1965) 73.
- 23 F.M. Chaudhary, G.R. Knox and P.L. Pauson, J. Chem. Soc. C, (1967) 2255.
- **24 G. Cardaci and SM. Murgia. 3. Organomeial. Chem.. 25.<1970)'483.**
- **25 G. Paliani, S.M. Murgia and G. Cardaci. 3. Organometal. Chem.. 30 (1971j 221.**
- **26 J.P. Crow, W.R. Cullen, F.G. Herring, J.R. Sams and R.L. Tapping. In&g. Chem., 10 (1971) 1617.**
- **27 R.A. Mazak and R.L. Collins, 3. Chem. Phys.. 51(1969) 3220.**
- **28 D.M. Adams and A. Squire. J. Chem. Sot. A. (1970) 814.**
- **29 D.C. Andrews and G. Davidson. J. Organometal. Chem., 43 (1972) 393:**
- **30 A. Poletti. A. Santucci and A. Foffani. J.** Mol. Stxuct.. **3 (1969) 211.**
- **31 A. Santucci; A. Poletti and A_ Foffani. J. Mol. Struct.. 5 (1970) 49.**
- **32 R.S. McDowell, W-D. Horrocks and J.T. Yates. J. Chem. Phys.. 34 (1961) 530.**
- **33 G. Paliani. R. Cataliotti. A. Poletti and A. Foffani. J. Chem. Sot. A. (1972) 1741.**
- **34 W. Beck. A. Melnikoff and R. Stahl, Chem. Ber., 99 (1966) 3721.**
- **35 R. Seip, Acta Chem. Stand., 26.(1972) 1966.**
- **36 L. Federov. Russ. Chem. Rev.. 39 (1970) 655.**
- **37 G. Cardaci,** S.M. **Murgia and A. Foffani. J. Organometal. Chem.. 37 (1972) Cll.**
- **38 CA. Reilly and H. Thyret. J. Amer. Chem. Sot.. 89 (1967) 5144.**
- **39 F-A. Cotton and C.S. Kmihanzel. J. Amer. Chem. Sot.. 84 (1962) 4432.**
- **40 W. Hieber and H. Beutner. 2. Anorg. AUg. Chem.. 320 (1962) 101.**